i have two codes for solving linear equations, one from intel:
/******************************************************************************* * Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved. * The information and material ("Material") provided below is owned by Intel * Corporation or its suppliers or licensors, and title to such Material remains * with Intel Corporation or its suppliers or licensors. The Material contains * proprietary information of Intel or its suppliers and licensors. The Material * is protected by worldwide copyright laws and treaty provisions. No part of * the Material may be copied, reproduced, published, uploaded, posted, * transmitted, or distributed in any way without Intel's prior express written * permission. No license under any patent, copyright or other intellectual * property rights in the Material is granted to or conferred upon you, either * expressly, by implication, inducement, estoppel or otherwise. Any license * under such intellectual property rights must be express and approved by Intel * in writing. * ******************************************************************************** */ /* LAPACKE_dgesv Example. ====================== The program computes the solution to the system of linear equations with a square matrix A and multiple right-hand sides B, where A is the coefficient matrix: 6.80 -6.05 -0.45 8.32 -9.67 -2.11 -3.30 2.58 2.71 -5.14 5.66 5.36 -2.70 4.35 -7.26 5.97 -4.44 0.27 -7.17 6.08 8.23 1.08 9.04 2.14 -6.87 and B is the right-hand side matrix: 4.02 -1.56 9.81 6.19 4.00 -4.09 -8.22 -8.67 -4.57 -7.57 1.75 -8.61 -3.03 2.86 8.99 Description. ============ The routine solves for X the system of linear equations A*X = B, where A is an n-by-n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A*X = B. Example Program Results. ======================== LAPACKE_dgesv (row-major, high-level) Example Program Results Solution -0.80 -0.39 0.96 -0.70 -0.55 0.22 0.59 0.84 1.90 1.32 -0.10 5.36 0.57 0.11 4.04 Details of LU factorization 8.23 1.08 9.04 2.14 -6.87 0.83 -6.94 -7.92 6.55 -3.99 0.69 -0.67 -14.18 7.24 -5.19 0.73 0.75 0.02 -13.82 14.19 -0.26 0.44 -0.59 -0.34 -3.43 Pivot indices 5 5 3 4 5 */ #include <stdlib.h> #include <stdio.h> #include "mkl_lapacke.h" /* Auxiliary routines prototypes */ extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda ); extern void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ); /* Parameters */ #define N 3 #define NRHS 1 #define LDA N #define LDB NRHS /* Main program */ int main() { /* Locals */ MKL_INT n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info; /* Local arrays */ MKL_INT ipiv[N]; double a[LDA*N] = { 1,1,1, 1,1,3, 2,1,1 }; double b[LDB*N] = { 1, 2, 3 }; /* Executable statements */ printf( "LAPACKE_dgesv (row-major, high-level) Example Program Results\n" ); /* Solve the equations A*X = B */ info = LAPACKE_dgesv( LAPACK_ROW_MAJOR, n, nrhs, a, lda, ipiv, b, ldb ); /* Check for the exact singularity */ if( info > 0 ) { printf( "The diagonal element of the triangular factor of A,\n" ); printf( "U(%i,%i) is zero, so that A is singular;\n", info, info ); printf( "the solution could not be computed.\n" ); exit( 1 ); } /* Print solution */ print_matrix( "Solution", n, nrhs, b, ldb ); /* Print details of LU factorization */ print_matrix( "Details of LU factorization", n, n, a, lda ); /* Print pivot indices */ print_int_vector( "Pivot indices", n, ipiv ); exit( 0 ); } /* End of LAPACKE_dgesv Example */ /* Auxiliary routine: printing a matrix */ void print_matrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda ) { MKL_INT i, j; printf( "\n %s\n", desc ); for( i = 0; i < m; i++ ) { for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] ); printf( "\n" ); } } /* Auxiliary routine: printing a vector of integers */ void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ) { MKL_INT j; printf( "\n %s\n", desc ); for( j = 0; j < n; j++ ) printf( " %6i", a[j] ); printf( "\n" ); }
another which i created for gnu blas lapack :
#include<stdio.h> #include<iostream> #include "lapacke.h" using namespace std; int main() { // note, to understand this part take a look in the MAN pages, at section of parameters. char TRANS = 'T'; int INFO=3; int LDA = 3; int LDB = 3; int N = 3; int NRHS = 1; int IPIV[3] ; /* double A[9]= { 1,2,-1, 2,1,1, -1,2,1, }; double B[3]= { 4, -2, 2 }; */ double A[9] = { 1,1,1, 1,1,3, 2,1,1 }; double B[3] = { 1, 2, 3 }; // end of declarations cout << "compute the LU factorization..."<< endl << endl; //void LAPACK_dgetrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, lapack_int* ipiv, lapack_int *info ); LAPACK_dgetrf(&N,&N,A,&LDA,IPIV,&INFO); // checks INFO, if INFO != 0 something goes wrong, for more information see the MAN page of dgetrf. if(INFO) { cout << "an error occured : "<< INFO << endl << endl; }else{ cout << "solving the system..."<< endl << endl; // void LAPACK_dgetrs( char* trans, lapack_int* n, lapack_int* nrhs, const double* a, lapack_int* lda, const lapack_int* ipiv,double* b, lapack_int* ldb, lapack_int *info ); dgetrs_(&TRANS,&N,&NRHS,A,&LDA,IPIV,B,&LDB,&INFO); printf("IPIV= %d %d %d \n",IPIV[0],IPIV[1],IPIV[2]); if(INFO) { // checks INFO, if INFO != 0 something goes wrong, for more information see the MAN page of dgetrs. cout << "an error occured : "<< INFO << endl << endl; }else{ cout << "print the result : {"; int i; for (i=0;i<N;i++) { cout << B[i] << ""; } cout << "}"<< endl << endl; } } cout << "program terminated."<< endl << endl; return 0; }
compute the LU factorization... solving the system... IPIV= 1 3 3 print the result : {2 -1.5 0.5 } program terminated.
outputs are: LAPACKE_dgesv (row-major, high-level) Example Program Results Solution 2.00 -1.50 0.50 Details of LU factorization 2.00 1.00 1.00 0.50 0.50 2.50 0.50 1.00 -2.00 Pivot indices 3 2 3
can intel's ipiv differ from gnu's ipiv (different algorithm) or, there is some error in my code ?
Awaiting your reply
Regards
Puneet