Quantcast
Channel: Intel® oneAPI Math Kernel Library & Intel® Math Kernel Library
Viewing all articles
Browse latest Browse all 2652

Different pivots ( intel mkl vs gnu lapack) from dgesv !

$
0
0

i have two codes for solving linear equations, one from intel:
 

/*******************************************************************************
*  Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  permission. No license under any patent, copyright or other intellectual
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*
********************************************************************************
*/
/*
   LAPACKE_dgesv Example.
   ======================

   The program computes the solution to the system of linear
   equations with a square matrix A and multiple
   right-hand sides B, where A is the coefficient matrix:

     6.80  -6.05  -0.45   8.32  -9.67
    -2.11  -3.30   2.58   2.71  -5.14
     5.66   5.36  -2.70   4.35  -7.26
     5.97  -4.44   0.27  -7.17   6.08
     8.23   1.08   9.04   2.14  -6.87

   and B is the right-hand side matrix:

     4.02  -1.56   9.81
     6.19   4.00  -4.09
    -8.22  -8.67  -4.57
    -7.57   1.75  -8.61
    -3.03   2.86   8.99

   Description.
   ============

   The routine solves for X the system of linear equations A*X = B,
   where A is an n-by-n matrix, the columns of matrix B are individual
   right-hand sides, and the columns of X are the corresponding
   solutions.

   The LU decomposition with partial pivoting and row interchanges is
   used to factor A as A = P*L*U, where P is a permutation matrix, L
   is unit lower triangular, and U is upper triangular. The factored
   form of A is then used to solve the system of equations A*X = B.

   Example Program Results.
   ========================

 LAPACKE_dgesv (row-major, high-level) Example Program Results

 Solution
  -0.80  -0.39   0.96
  -0.70  -0.55   0.22
   0.59   0.84   1.90
   1.32  -0.10   5.36
   0.57   0.11   4.04

 Details of LU factorization
   8.23   1.08   9.04   2.14  -6.87
   0.83  -6.94  -7.92   6.55  -3.99
   0.69  -0.67 -14.18   7.24  -5.19
   0.73   0.75   0.02 -13.82  14.19
  -0.26   0.44  -0.59  -0.34  -3.43

 Pivot indices
      5      5      3      4      5
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda );
extern void print_int_vector( char* desc, MKL_INT n, MKL_INT* a );

/* Parameters */
#define N 3
#define NRHS 1
#define LDA N
#define LDB NRHS

/* Main program */
int main() {
        /* Locals */
        MKL_INT n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
        /* Local arrays */
        MKL_INT ipiv[N];
        double a[LDA*N] = {
		1,1,1,
		1,1,3,
		2,1,1
        };
        double b[LDB*N] = {
		1,
		2,
		3
        };
        /* Executable statements */
        printf( "LAPACKE_dgesv (row-major, high-level) Example Program Results\n" );
        /* Solve the equations A*X = B */
        info = LAPACKE_dgesv( LAPACK_ROW_MAJOR, n, nrhs, a, lda, ipiv,
                        b, ldb );
        /* Check for the exact singularity */
        if( info > 0 ) {
                printf( "The diagonal element of the triangular factor of A,\n" );
                printf( "U(%i,%i) is zero, so that A is singular;\n", info, info );
                printf( "the solution could not be computed.\n" );
                exit( 1 );
        }
        /* Print solution */
        print_matrix( "Solution", n, nrhs, b, ldb );
        /* Print details of LU factorization */
        print_matrix( "Details of LU factorization", n, n, a, lda );
        /* Print pivot indices */
        print_int_vector( "Pivot indices", n, ipiv );
        exit( 0 );
} /* End of LAPACKE_dgesv Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda ) {
        MKL_INT i, j;
        printf( "\n %s\n", desc );
        for( i = 0; i < m; i++ ) {
                for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
                printf( "\n" );
        }
}

/* Auxiliary routine: printing a vector of integers */
void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ) {
        MKL_INT j;
        printf( "\n %s\n", desc );
        for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
        printf( "\n" );
}

another which i created for gnu blas lapack :
 

#include<stdio.h>
#include<iostream>
#include "lapacke.h"


using namespace std;

int main()
{
    // note, to understand this part take a look in the MAN pages, at section of parameters.
    char    TRANS = 'T';
    int     INFO=3;
    int     LDA = 3;
    int     LDB = 3;
    int     N = 3;
    int     NRHS = 1;
    int     IPIV[3] ;

/*	double A[9]=
	{
	1,2,-1,
	2,1,1,
	-1,2,1,
	};
	double B[3]=
	{
	4,
	-2,
	2
	};
*/

    double  A[9] =
    {
    1,1,1,
    1,1,3,
    2,1,1
    };

    double B[3] =
    {
     1,
     2,
     3
    };

// end of declarations

    cout << "compute the LU factorization..."<< endl << endl;
    //void LAPACK_dgetrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, lapack_int* ipiv, lapack_int *info );
    LAPACK_dgetrf(&N,&N,A,&LDA,IPIV,&INFO);

    // checks INFO, if INFO != 0 something goes wrong, for more information see the MAN page of dgetrf.
    if(INFO)
    {
        cout << "an error occured : "<< INFO << endl << endl;
    }else{
        cout << "solving the system..."<< endl << endl;
        // void LAPACK_dgetrs( char* trans, lapack_int* n, lapack_int* nrhs, const double* a, lapack_int* lda, const lapack_int* ipiv,double* b, lapack_int* ldb, lapack_int *info );
        dgetrs_(&TRANS,&N,&NRHS,A,&LDA,IPIV,B,&LDB,&INFO);
     printf("IPIV= %d %d %d \n",IPIV[0],IPIV[1],IPIV[2]);
	   if(INFO)
        {
            // checks INFO, if INFO != 0 something goes wrong, for more information see the MAN page of dgetrs.
            cout << "an error occured : "<< INFO << endl << endl;
        }else{
            cout << "print the result : {";
            int i;
            for (i=0;i<N;i++)
            {
                cout << B[i] << "";
            }
            cout << "}"<< endl << endl;
        }
    }

    cout << "program terminated."<< endl << endl;
    return 0;
}
compute the LU factorization...
solving the system...
IPIV= 1 3 3
print the result : {2 -1.5 0.5 }
program terminated.
outputs are:

LAPACKE_dgesv (row-major, high-level) Example Program Results
Solution
   2.00
  -1.50
   0.50


Details of LU factorization
   2.00   1.00   1.00
   0.50   0.50   2.50
   0.50   1.00  -2.00

 Pivot indices
      3      2      3

can intel's ipiv differ from gnu's ipiv (different algorithm) or, there is some error in my code ?

Awaiting your reply
Regards
Puneet


Viewing all articles
Browse latest Browse all 2652

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>